
## Clinical Fungi and Global Warming

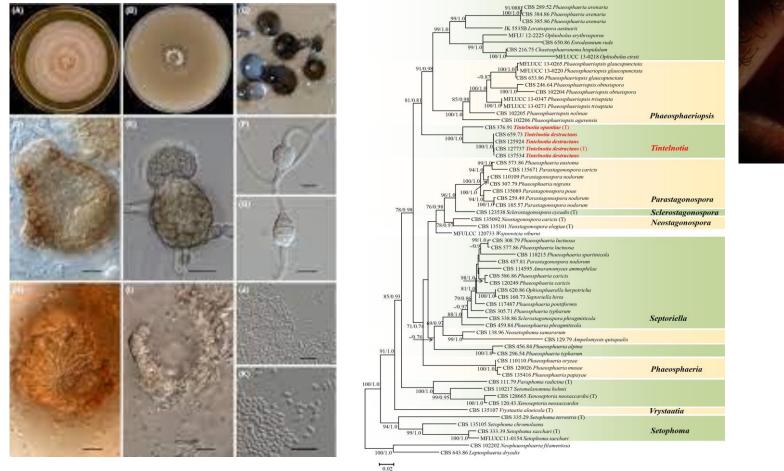
## Sarah Ahmed

Center of Expertise in Mycology, RadboudUMC / CWZ

### Clinically important fungi



390 species


720 species

ATLAS of CLINICAL FUNGI

he ultimate benchtool for diagnostics

A.M.S. Al-Hatmi, M.J. Figueras and R.G. Vi

og, J. Guarro, J. Gené, S.A. Ahmed,





*Tintelnotia*, a new genus in *Phaeosphaeriaceae* harbouring agents of cornea and nail infections in humans

S. A. Ahmed<sup>1</sup> | W. Hofmüller<sup>2</sup> | M. Seibold<sup>3</sup> | G. S. de Hoog<sup>4,5</sup> | H. Harak<sup>6</sup> | I. Tammer<sup>7</sup> | A. D. van Diepeningen<sup>4</sup> | W. Behrens-Baumann<sup>2</sup>

<u>Am J Ophthalmol Case Rep.</u> 2020 Sep; 19: 100791. Published online 2020 Jun 25. doi: <u>10.1016/j.ajoc.2020.100791</u> PMCID: PMC7327197 PMID: <u>32637731</u>

*Tintelnotia destructans* as an emerging opportunistic pathogen: First case of *T. destructans* superinfection in herpetic keratitis

<u>Med Mycol Case Rep.</u> 2020 Mar; 27: 8–10. Published online 2019 Dec 4. doi: <u>10.1016/j.mmcr.2019.12.004</u> PMCID: PMC6920192 PMID: <u>31879585</u>

#### Contact lens associated keratitis due to Tintelnotia destructans

Shu Jin Tan,<sup>a,\*</sup> Mariyam Nure,<sup>a</sup> Dianne Gardam,<sup>a</sup> Charlotte McKnight,<sup>b</sup> Peter A. Boan,<sup>a,c</sup> and Benjamin M. Clark<sup>c</sup>

#### CASE REPORT

#### *Tintelnotia destructans* Keratitis: A Clinicopathological Report and Review of the Literature

Kaufmann, Claude MD<sup>\*</sup>; Arnold, Mihaela<sup>†</sup>; Schipf, Alexander MD<sup>‡</sup>; Bruderer, Vera L. VMD<sup>§</sup>; Iselin, Katja C. MD<sup>\*</sup> Author Information⊙

Cornea 40(3):p 380-382, March 2021. | DOI: 10.1097/ICO.00000000002550

Germany Italy Finland The Netherlands Belgium Switzerland Australia

22.12.2017 | Keratoplastik | Kasuistiken

#### Tintelnotia destructans: Ein neuer Feind vor dem Tore

verfasst von: K. J. Habbe, Dr. A. Frings, S. Schrader, M. Roth, C. MacKenzie, G. Walther, O. Kurzai, G. Geerling

Erschienen in: Die Ophthalmologie | Ausgabe 11/2018

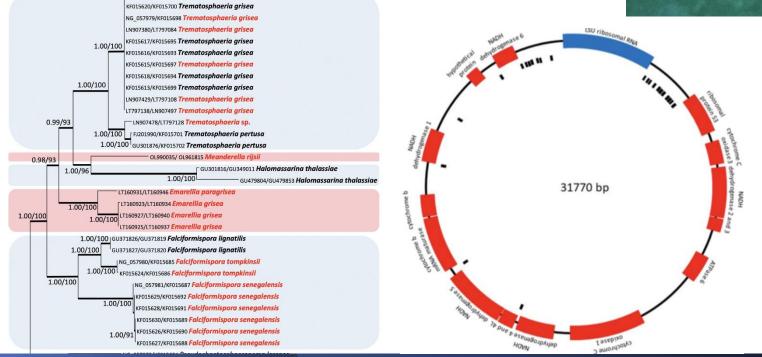
Microbes and Infection 24 (2022) 104932



Contents lists available at ScienceDirect

Microbes and Infection

journal homepage: www.elsevier.com/locate/micinf


Original article

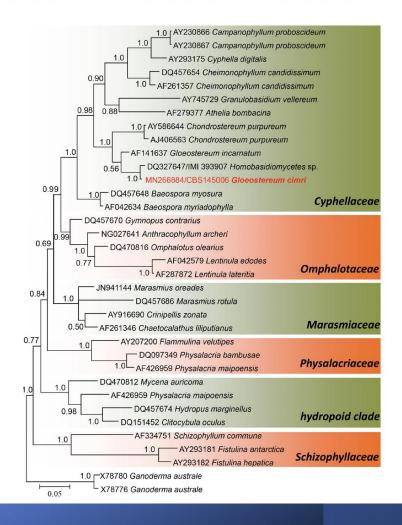
Meanderella rijsii, a new opportunist in the fungal order Pleosporales

Sarah A. Ahmed <sup>a, b, \*</sup>, Tobias Engel <sup>c</sup>, Jan Zoll <sup>a</sup>, Peggy C.R. Godschalk <sup>d</sup>, Ruth Klaasen <sup>e</sup>, Leandro Moreno <sup>f</sup>, Henrich van der Lee <sup>a</sup>, Paul E. Verweij <sup>a</sup>, Sybren de Hoog <sup>a, b, g, \*\*</sup>

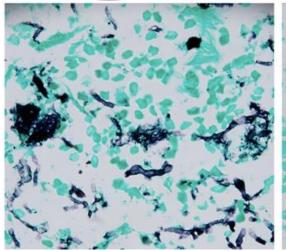
KF015619/KF015696 Trematosphaeria grisea

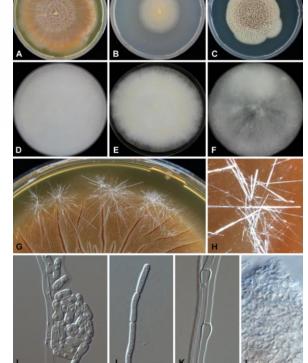






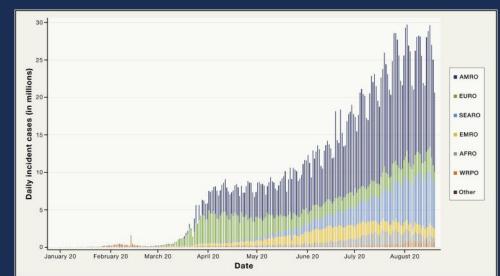

OPEN ACCESS


**ORIGINAL ARTICLE** 


#### Gloeostereum cimri, a novel shelf fungus isolated from a human pulmonary cyst

Sarah A. Ahmed <sup>(1)</sup> <sup>a,b,c</sup>, Sybren de Hoog<sup>a,b,d</sup>, Janet Kim<sup>e</sup>, Jayne Crozier<sup>f</sup>, Sarah E. Thomas<sup>f</sup>, Benjamin Stielow<sup>g</sup> and David A. Stevens<sup>h,i</sup>





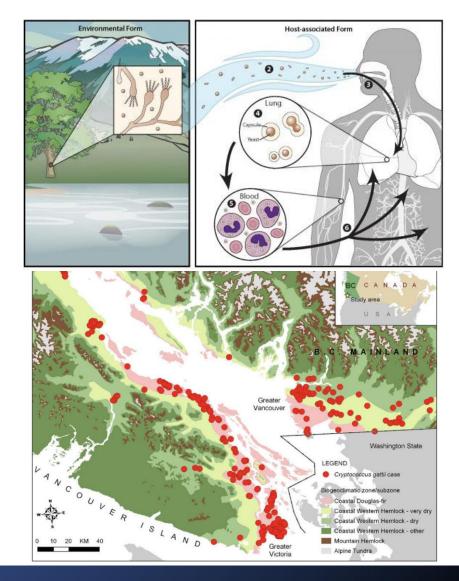





#### Emerging clinical fungi

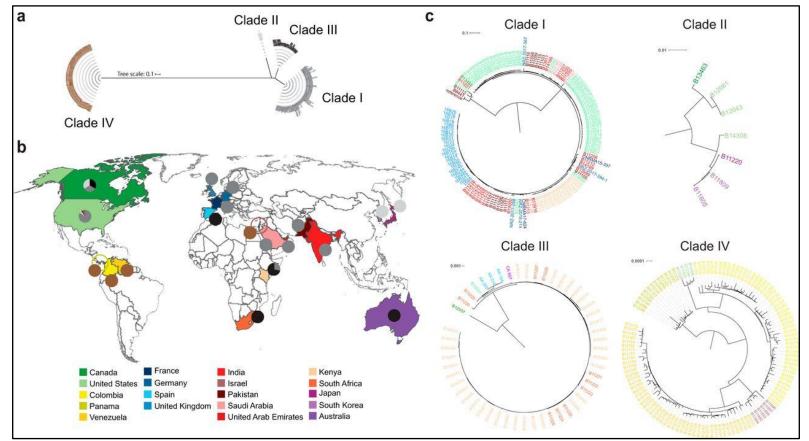
- 'emerging': According to Oxford Dictionary, means 'becoming apparent or prominent'.
- A new fungus is spotted at increasing frequency after its first discovery.
- Are we flooded by emerging pathogenic fungi?
- Cryptococcus gattii, Candida auris, Trichophyton indotineae, Emergomyces africanus, Sporothrix brasiliensis, Pseudogymnoascus destructans.




Global Daily Incident Cases of COVID-19

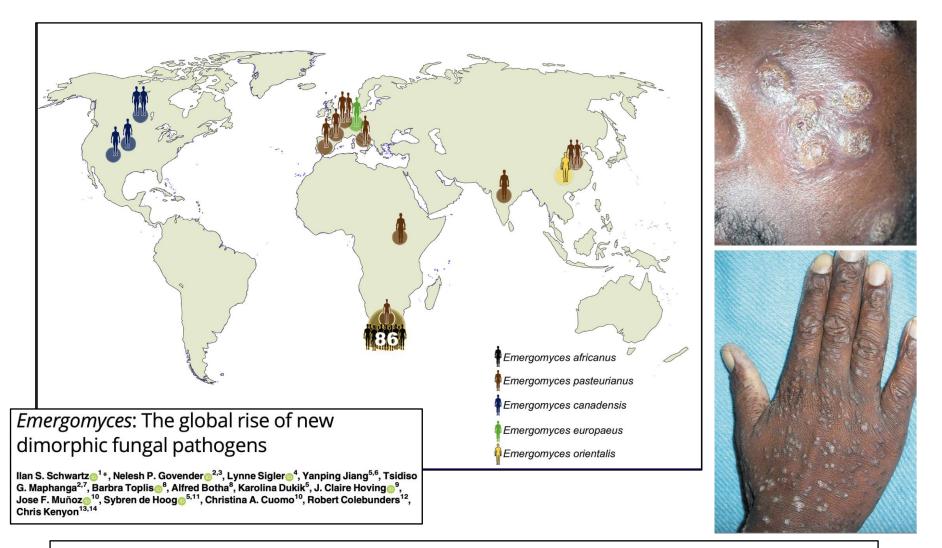
## Emerging pathogen - Cryptococcus gattii

 Vancouver Island and British Columbia (1999)


• Pneumonia or meningitis 36 cases/million population/year.

 The fungus (resist, survive, dispersal) present in a high concentrations in the environment.




Hoang, et al. doi: 10.1016/j.clinmicnews.2011.11.003.

## Emerging pathogens - Candida auris

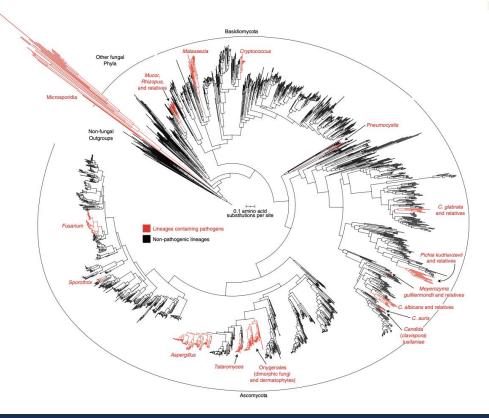


- Emerged simultaneously in four global regions.
- Multidrug resistant.
- Discovered in 2009 from a single ear infection in Japan.

## Emerging pathogens - *Emergomyces*



Kenyon et al. A Dimorphic Fungus Causing Disseminated Infection in South Africa. 2013. N Engl J Med.


## Evolution of merging pathogens

nature microbiology

#### REVIEW ARTICLE https://doi.org/10.1038/s41564-022-01112-0

Check for updates

#### Evolution of the human pathogenic lifestyle in fungi



First recorded case of an aspergillosis infection in revolutionary Paris, France<sup>120</sup>

First described case of mucormycosis 122

Discovery of coccidiomycosis in Argentina by a medical student<sup>124</sup>

Publication of the first clinical case of sporotrichosis 127

Proof that histoplasmosis is a fungal infection caused by Histoplasma fungi<sup>129</sup>

First documented case of microsporidiosis in Japan<sup>46</sup>

First report of *Pneumocystis carinii* pneumonia in patients with AIDS<sup>130</sup>

Beginning of zoonotic epidemic of cat-associated sporotrichosis caused by *Spororthrix brasiliensis* in Brazil<sup>132</sup>

Outbreak of fungal keratitis caused by *Fusarium* species associated with the use of a particular contact lens solution in multiple states of the USA<sup>134</sup>

Outbreak of necrotizing cutaneous mucormycosis caused by the rare pathogen *Apophysomyces trapeziformis* after a tornado in Missouri, USA <sup>135</sup>

First reports of fungal diseases associated with the global pandemic of COVID-19, including of COVID-19 associated pulmonary aspergillosis (CAPA)<sup>138</sup> First report to link oral candidiasis to *Candida albicans*<sup>121</sup>; descriptions of the disease date back to Hippocrates in ancient Greece

> Identification of *Malassezia* as the cause of seborrheic dermatitis by Malassez<sup>123</sup>

Discovery of blastomycosis in Baltimore, USA<sup>125</sup>

Earliest record of cryptococcosis in Germany<sup>126</sup>

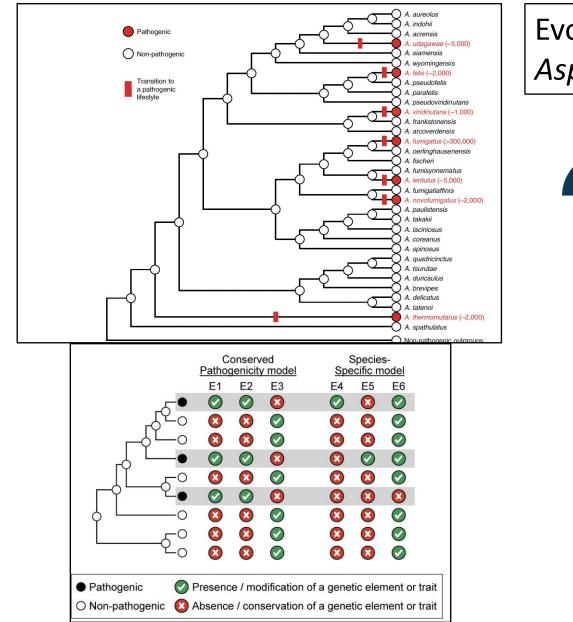
First description of paracoccidioidomycosis in Brazil<sup>128</sup>

Demonstration that *Pneumocystis* can cause pneumonia in humans<sup>130</sup>

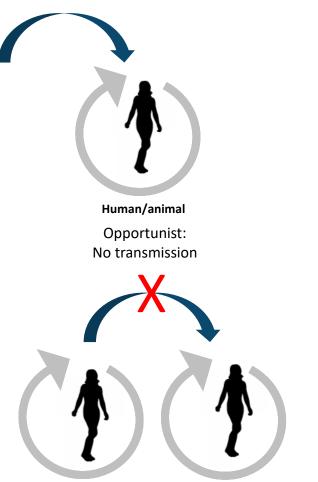
First report of talaromycosis in Southeast Asia from a patient with Hodgkin's disease<sup>97</sup>

Dust from landslides caused by the Northridge earthquake and its aftershocks leads to an outbreak of coccidioidomycosis in the town of Simi Valley, California<sup>131</sup>

First report of emergomycosis in a patient with AIDS in Italy<sup>113</sup>


Outbreak of cryptococcosis caused by Cryptococcus gattii on Vancouver Island, Canada<sup>133</sup>

Discovery of *Candida auris*, which is now known to have caused infections in more than 30 countries from six continents, including nosocomial outbreaks, and its clinical isolates exhibit resistance to all known antifungal drugs <sup>157,158</sup>


Outbreak of fatal infections by the fungus Saprochaete clavata, – an organism not previously known to be a human pathogen, in multiple health care facilities in France<sup>136</sup>

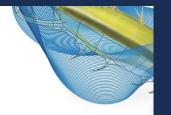
Outbreak of fungal meningitis primarily caused by Exserohilum rostratum, a very rare human pathogen, among patients that received contaminated steroid injections<sup>137</sup>

2020



#### Evolution of pathogenicity in Aspergillus




## The hidden pathogenic potential of environmental fungi

Glauber R de S Araújo<sup>1</sup>, Wanderley de Souza<sup>1</sup> & Susana Frases<sup>\*,1</sup>

<sup>1</sup>Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

\* Author for correspondence: Tel.: +55 21 3938 6593; susanafrases@biof.ufrj.br

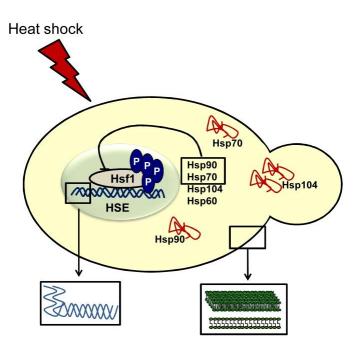
 Thermotolerance is a key step toward pathogenesis to humans.



CrossMark

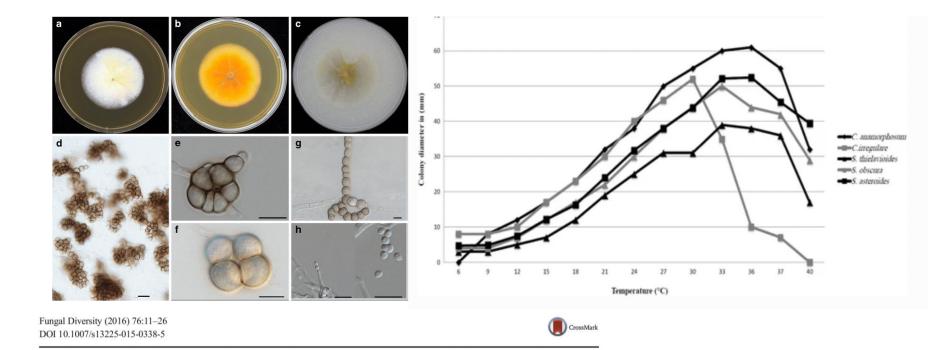
#### Fungi between extremotolerance and opportunistic pathogenicity on humans

```
Cene Gostinčar<sup>1,2</sup> \circ · Janja Zajc<sup>1,3</sup> · Metka Lenassi<sup>4</sup> · Ana Plemenitaš<sup>4</sup> · Sybren de Hoog<sup>5,6</sup> · Abdullah M. S. Al-Hatmi<sup>5,6,7</sup> · Nina Gunde-Cimerman<sup>1</sup>
```


Received: 1 June 2018 / Accepted: 22 October 2018 / Published online: 9 November 2018  $\ensuremath{\mathbb{C}}$  The Author(s) 2018

• Link between osmotolerance / stress tolerance and pathogenicity.

#### Successful pathogens


 Able to grow at 37°C or above: Only 6% of species in environment can tolerate 37°C.

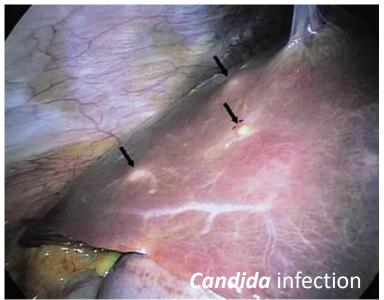
| Scale distance           | Strain    | Species                  | 25 | ° 30° | 35° | 37° | 40° | 42° | 45° |
|--------------------------|-----------|--------------------------|----|-------|-----|-----|-----|-----|-----|
| 0.32 0.25 0.19 0.13 0.06 | 1         |                          |    |       |     |     |     |     |     |
|                          | CBS 10913 | Candida auris            |    |       |     |     |     |     |     |
|                          | CBS 5468  | Candida haemulonis       |    |       |     |     |     |     |     |
|                          | CBS 5149  | Candida haemulonis       |    |       |     |     |     |     |     |
|                          | CBS 7801  | Candida haemulonis       |    |       |     |     |     |     |     |
|                          | CBS 6590  | Candida haemulonis       |    |       |     |     |     |     |     |
|                          | CBS 5150  | Candida haemulonis       |    |       |     |     |     |     |     |
|                          | CBS 7802  | Candida haemulonis       |    |       |     |     |     |     |     |
|                          | CBS 6332  | Candida haemulonis       |    |       |     |     |     |     |     |
|                          | CBS 6915  | Candida duobushaemulonii |    |       |     |     |     |     |     |
|                          | CBS 7800  | Candida duobushaemulonii |    |       |     |     |     |     |     |
|                          | CBS 7798  | Candida duobushaemulonii |    |       |     |     |     |     |     |
|                          | CBS 7799  | Candida duobushaemulonii |    |       |     |     |     |     |     |
|                          | CBS 14366 | Candida vulturna         |    |       |     |     |     |     |     |
|                          | CBS 10815 | Candida ruelliae         |    |       |     |     |     |     |     |
|                          | CBS 7249  | Candida heveicola        |    |       |     |     |     |     |     |



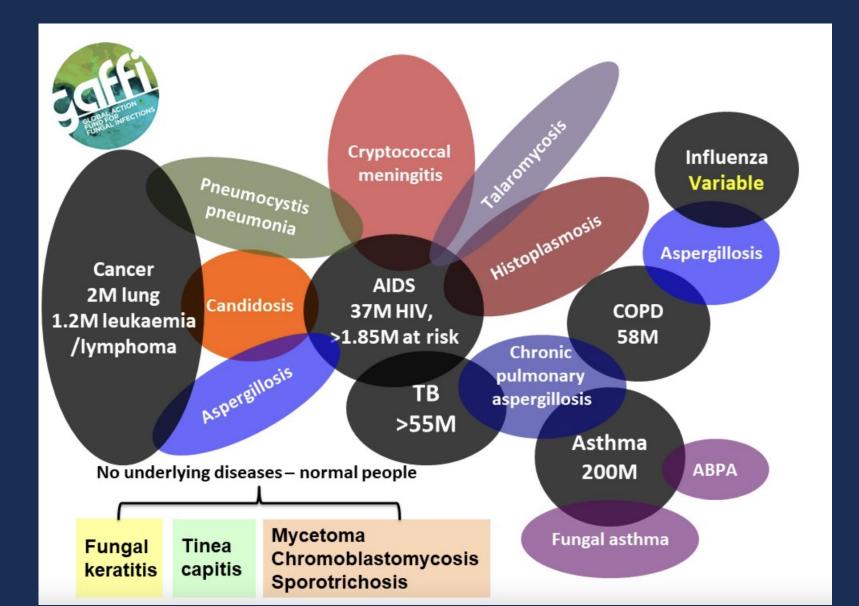
 Saccharomyces cerevisiae clinical isolates are able to grow at higher temperatures.

#### Successful pathogens




#### Chaetomium-like fungi causing opportunistic infections in humans: a possible role for extremotolerance

Sarah A. Ahmed<sup>1,2,3</sup> • Ziauddin Khan<sup>4</sup> • Xue-wei Wang<sup>2,5</sup> • Tarek A. A. Moussa<sup>6,7</sup> • Hassan S. Al-Zahrani<sup>6</sup> • Omar A. Almaghrabi<sup>6</sup> • Deanna A. Sutton<sup>8</sup> • S. Ahmad<sup>4</sup> • Johannes Z. Groenewald<sup>2</sup> • A. Alastruey-Izquierdo<sup>9</sup> • Anne van Diepeningen<sup>2</sup> • S. B. J. Menken<sup>3</sup> • M. J. Najafzadeh<sup>10</sup> • Pedro W. Crous<sup>2</sup> • Oliver Cornely<sup>11</sup> • Axel Hamprecht<sup>12</sup> • Maria J. G. T. Vehreschild<sup>11</sup> • A. J. Kindo<sup>13</sup> • G. Sybren de Hoog<sup>2,3,6,14,15,16,17</sup>


#### Successful pathogens

- Able to grow at 37°C or above.
  - Emergence of mammals as the dominant land species (endothermy and homeothermy). (Casadevall: fungal infection-mammalian selection)
- Able to breakthrough the barriers and invade human host.
- Able to survive inside human body (lysis/absorption).
- Resist the immune system.

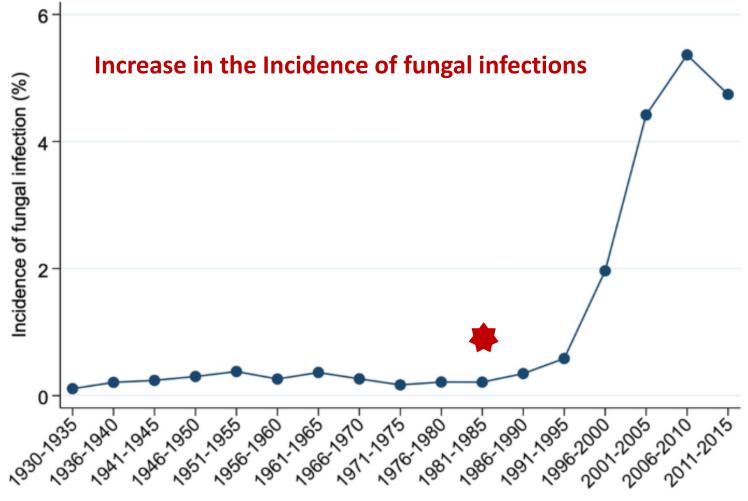




#### Fungal infections in humans



### Burden of fungal diseases


THE LANCET

 App. 6.5 million invasive fungal infections / year.

 Fungal disease mortality 3.8 million > malaria and TB.

#### Global health Events About This journal Journals Publish Clinical Multimedia **REVIEW | ONLINE FIRST** Global incidence and mortality of severe fungal disease Prof David W Denning, FMedSci 🛛 🖄 Published: January 12, 2024 • DOI: https://doi.org/10.1016/S1473-3099(23)00692-8 • 🖲 Check for updates 2500-2000 1500 Estimated annual global incidence (thousands) 1000 -IA in COPD IA in ICU 900-IA in lung cancer IA in leukaemia, lymphoma, and allogeneic HSCT 800-Candidaemia 700-Invasive candidiasis without candidaemia Pneumocystis pneumonia not in AIDS 600-Pneumocystis pneumonia in AIDS 500-Cryptococcal meningitis not in AIDS Cryptococcal meningitis in AIDS 400-6548000 estimated annual incidence 300-200-100-Candidate na and takes Preunocisis Supported reginations Disseninated AUS nicoulfonand likis 0aspergillosis MUCORNYCOSIS Cocidioidonycois Invasive

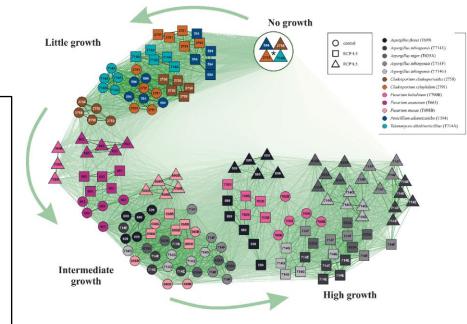
#### Burden of fungal infections



Periods

#### Dantas KC, et al. doi: 10.1038/s41598-021-83587-1.

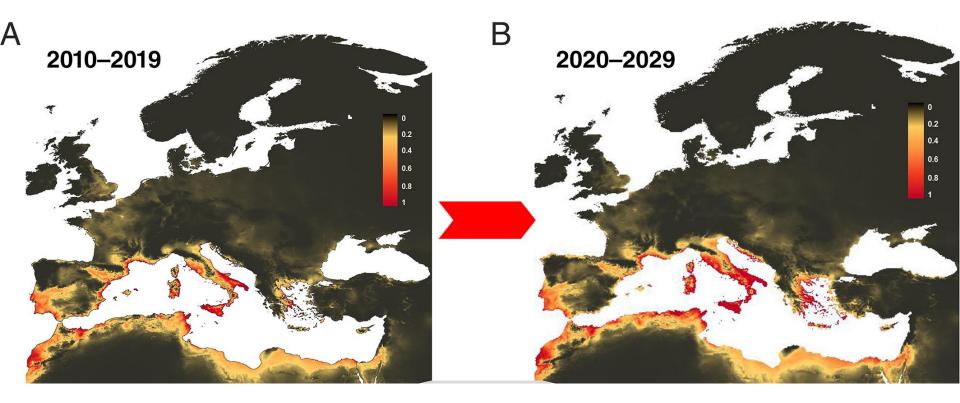
## Challenges in Mycology






# Global warming: emergence of fungal pathogens

• Fungal distribution.

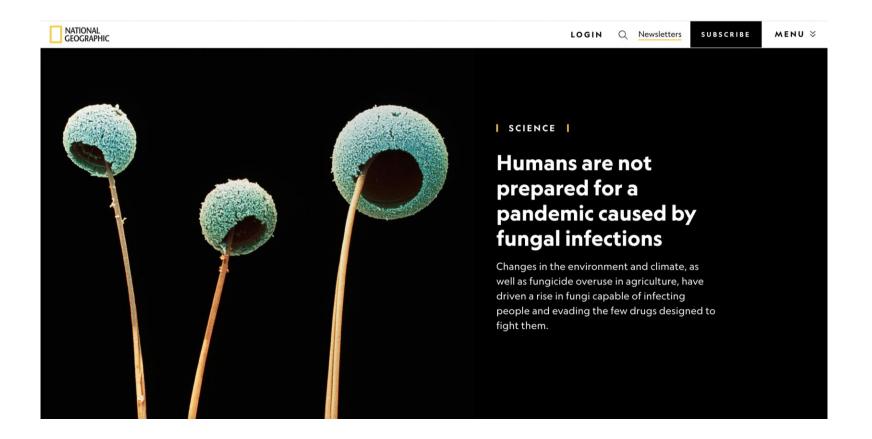

- Higher level of thermal tolerance.
- More virulent and resistance.



Survival and growth of microscopic fungi derived from tropical regions under future heat waves in the Pannonian Biogeographical Region

Zsófia Tischner ª, Anna Páldy <sup>b</sup>, Sándor Kocsubé <sup>c</sup>, László Kredics <sup>c</sup>, Csaba Dobolyi ª, Rózsa Sebők ª, Balázs Kriszt ª, Bence Szabó <sup>d</sup>, Donát Magyar <sup>b</sup> A ⊠

#### Global warming and future outbreak




## Global warming impact on the expansion of fundamental niche of *Cryptococcus* gattii VGI in Europe

• Niche modelling of *Cryptococcus gattii* VGI in Europe and Mediterranean.

#### Global warming and future outbreak

#### Are we prepared?





# Thank you for your attention